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The electrical resistivity of dilute alloys of gold with Ag, Cu, Pt, and Co and of platinum with Au and
Rh has been measured, together with the resistivity of the pure solvent metals, between 1.6 and 373°K. The
solute concentration ranged, in general, between 0.1 and 5 at.%,. Also the resistivity change caused by
quenched-in lattice vacancies in platinum has been measured between 1.6 and 295°K. A data analysis
method has been used which eliminates the sensitivity of the results to the geometrical factor of the sample.
In all systems, positive deviations A(T) form Matthiessen’s rule are observed. For the alloys A#-Co and
Pi-Rh, A(T) is found to be proportional to InT between 30 and 200°K. For the other systems, the A(T)
curves can be described approximately by a Kohler-Sondheimer-Wilson equation. At low temperatures, the
temperature dependence of A is found to be somewhat lower than that of the resistivity of the pure solvent
metal. For the low solute concentrations, a sharp peak in the A(T) curves at about 30-50°K is observed.
Various possibilities for explaining the results are discussed, including the two-band model, the anisotropy
of the electron scattering, and the shift in the Fermi surface due to alloying.

I. INTRODUCTION

VER 100 years ago, Matthiessen!-? noted that the
temperature dependence of the electrical resis-
tance of a wide range of dilute alloys was the same as
that of the host solvent metal. His measurements were
carried out between the ice point and the boiling point
of water. He found that the effect of adding solute
elements was to add a resistance which depended on the
solute concentration ¢, but not on the temperature 7.
This result can be expressed as

Palloy (C,T) =Psolvent(T) +Psulute (C) . (1)

Equation (1) was found to apply to most alloy systems
to a surprising degree of accuracy and became known
as Matthiessen’s rule (MR). It implies that the scatter-
ing by the thermal motion of the lattice and by the
impurity are independent and additive.

As measurements were extended to lower and lower
temperatures, Eq. (1) was not so well obeyed, as
Griineisen® was the first to emphasize. To take into
account the discrepancy, another term must be added
to Eq. (1) representing the temperature dependence of
the impurity resistance, A(c,T"), which is known as the
deviation from Matthiessen’s rule. Equation (1) then
becomes

Palloy (5, T) = Psolvent(T) +psolute (6;0) +A (C; T) . (2)

* Based on work performed under the auspices of the U. S
Atomic Energy Commission.

1 This paper is based in part on a dissertation submitted by
R. G. Stewart to the Graduate School of the Illinois Institute of
Technology in partial fulfillment of the requirements for the
Ph.D. degree.

I Present address: Lockheed Palo Alto Research Laboratory,
Palo Alto, Calif. 94304.
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The ratio A(c,T)/psotute(c,0) is usually small, on the
order of several percent. Furthermore, the temperature
dependence of the deviations in the room-temperature
range is frequently quite small, so that Matthiessen’s
observation (dp/dT)aney = (dp/dT )sotvent is remarkably
valid in that temperature range. (Clearly, he was done
a disservice when others extended his rule to all
temperatures.)

The early measurements? of the deviations from MR
established that A(c,T) increases with temperature and
then saturates, and that it increases with solute con-
centration. A function having this general behavior was
derived by Sondheimer and Wilson® on the presumption
that two bands, s and d, contribute to the conductivity,
and that the conductivities of the two bands add. Then
the presumption is made that MR applies to each band
separately; i.e., the impurity and lattice resistivities
add within one band and A,(7T)=A4(T)=0. Next,
using the standard rules for evaluating the resistance of
a series-parallel combination, an apparent temperature
dependence of the impurity resistance or deviation from
MR appears having the general form

1 1 1
= +
A(T) BPsolute(O)

©)

“YPsolvent (T)

Here 8 and v are constants related to the conductivities
in the bands.

Later Kohler* derived an expression for A(T) of
precisely the same form as (3), but based on different
and more general premises. Kohler found the solution
of the Boltzmann equation under the applied external
field for the case of two simultaneous collision operators,

4 M. Kohler, Z. Physik 126, 495 (1949), and references therein.
5 E. H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)
190, 435 (1947).
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representing the impurity scattering and the thermal
lattice scattering, respectively, by using the Ritz
variational method together with trial distribution
functions which solve the problem exactly when the
collision operators act separately. The resulting total
resistivity exceeds the sum of the contribution of each
operator acting alone, yielding a deviation from MR of
the form of Eq. (3), even in the simplest case of one
isotropic spherical conduction band. In the following,
Eq. (3) will be referred to as the Kohler-Sondheimer-
Wilson (KSW) equation. The KSW equation is rela-
tively successful in predicting the general temperature
and concentration dependence of the measured de-
viations from MR.

Using Kohler’s general method, Sondheimer® ob-
tained expressions for the electrical conductivity,
thermal conductivity, and thermoelectric power as a
function of temperature in terms of high-order deter-
minantal expansions. Relative to an “ideal” conduc-
tivity described by a Bloch-Griineisen relation, he found
that the conductivity of both a pure and impure speci-
men are increased, but that the amount of increase is
smaller for a highly impure than a less impure sample.
This yields a positive deviation from MR that has a
maximum at low temperatures and vanishes at high
temperatures. This effect was employed by Krautz and
Schultz” to explain a peak in A(T) at about 60°K ob-
served in 4g-0.6Au and Au-1.0Ag alloys.® They used
the KSW equation to fit the balance of the A(T) curve
after the peak contribution was subtracted off.

Magnetic impurities can cause a deviation A(T)
which appears as a minimum in the resistivity at very
low temperatures, say 5 to 20°K.*"* The temperature
and concentration dependence of this effect has been
explained by Kondo® as an interaction between con-
duction electron pairs coupled by spin flipping due to
the impurity magnetic moment. As will be seen in the
present paper, and as was pointed out by Hedgcock and
Muir,®® for some transition metal solutes A(7") varies
logarithmically with temperature, suggesting that the
spin term is important in the resistivity at higher
temperatures than usually expected. The magnitude of
the deviations are generally larger for transition metal
solutes than for nontransition metal solutes.
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stituent or solute.
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edited by C. J. Gorter (North Holland Publishing Co., Amsterdam
1964), Vol. 1V, p. 194.
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D. O. Edwards, F. J. Mueller, and M. Yaqub (Plenum Press,
New York, 1965), Vol. B, p. 955.

12 J, Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964); 34,
372 (1965).
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Anisotropy of the relaxation time for phonon and
impurity scattering over the Fermi surface can give rise
to a deviation from MR of the type described by the
KSW equation. This would constitute an apparent
deviation from MR, as discussed earlier. If the anisot-
ropy of the impurity scattering relaxation time is also
temperature dependent, we have a real deviation from
MR imbedded in the apparent deviation.

The effect of the thermal motion of an impurity ion
(without perturbing the usual thermal motion of the
pure lattice) in directly causing a temperature-depen-
dent scattering or A(7") has been treated by Koshino,1
Klemens,'®'7 and Taylor.!®!* Koshino’s result, from
second-order perturbation theory using a screened
Coulomb impurity potential, gave A(7") proportional
to the square of the valence difference, to the impurity
concentration, and to the square of the temperature.
Taylor considered the problem diagramatically and
showed that a group of second-order processes cancel the
first-order processes of Koshino so that the resulting
deviation is much smaller. Klemens suggested the
motion of the impurity relative to its neighbors would
give a local lattice strain energy causing a deviation
A(T) proportional to 7* at very low temperatures.

Langer?® employed Kubo’s fluctuation-dissipation
theory of irreversible processes to investigate the
impurity resistance of a Fermi electron gas at finite
temperatures. He finds that the lowest order correction
terms cancel, leaving only a term due to correlation of
quasiparticles which is independent of impurity con-
centration and, hence, does not contribute to deviations
from MR.

The introduction of an impurity atom into a lattice
can change the vibrational characteristics of the lattice
and, hence, those aspects of a physical quantity which
are determined by the phonon spectrum. This general
problem has been extensively discussed in recent
years.2122 The effect of alloying on the specific heat?—25
clearly demonstrates the change in the vibrational
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(Plenum Press, New York, 1965), Vol. B, p. 996.
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B P, L. Taylor, Phys. Rev. 135, A1333 (1964).
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45, 819 (1963) [English transl.: Soviet Phys.—]ETP 18, 562
(1963)]; G. Kh. Panova and B. N. Samoilov, Zh. Eksperim, i
Teor. Fiz. 49, 456 (1965) [English transl.: Soviet Phys.—JETP
22, 320 (1966)7.
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de Wames, Phys. Rev. Letters 16, 892 (1966).
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spectrum besides the change in the electronic density
of states. Goodman?® has investigated the change in the
structure factor over wide ranges of binary alloy com-
position. Schlup? has calculated the frequency spec-
trums for disordered lattices as a function of mass ratio
and of concentration.

The anisotropy of the lattice vibrational spectrum
has been shown by Bross,?® using Kohler’s variational
procedure and the Sommerfeld-Bethe transition proba-
bility formalism, to lead to a deviation from MR which
is similar to the KSW equation.

The change in the Debye temperature with alloying
has been suggested as the cause of deviations from MR
by Hedgcock and Muir® and by Gerritsen and Das.?®
Damon and Klemens® have looked for the effects of
local modes on A(T) in gold alloys without success.
Huebener® has shown that there is a small contribution
to deviations from MR caused by phonon drag effects.
This contribution has a peak at low temperatures. The
calculated size of the phonon drag effect is one to two
orders of magnitude smaller than the actually observed
peak in the deviations from MR.

Recently, Kagan and Zhernov®? have treated the
deviations from MR in the electrical resistivity of
metals with nonmagnetic impurities using the diffrac-
tion model for describing the electron scattering within
a lattice. Their theory takes into account consistently
the deformation of the phonon spectrum due to the
introduction of impurity atoms and also the change in
the scattering potential at the site of the impurity.

Dugdale and Basinski® and Matsuda® have recently
used the two band model, the KSW equation, and the
anisotropy of the electron relaxation time over the
Fermi surface to treat deviations from MR and the
Hall coefficient in dilute alloys as a function of tem-
perature. Extending Ziman’s®® eight-cone Fermi-surface
model of belly and neck electrons, they explain their
results in a plausible and self-consistent manner.

Damon, Mathur, and Klemens?® investigated the
deviations from MR in dilute gold alloys below 40°K,
and divided them into a two-band model term, and a
term approximately proportional to 7* resulting from
the deformation of the impurity potential due to the
strain of the lattice in the neighborhood of the impurity.
Detailed comparisons of our results with specific aspects

26 P, L. Leath and B. Goodman, Phys. Rev. 148, 968 (1966).
27 W. A. Schlup, Physik Kondensierten Materie 3, 227 (1965).
28 H. Bross, Z. Naturforsch. 14a, 560 (1959).
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3¢ Takeshi Matsuda, J. Phys. Chem. Solids 30, 859 (1969).

8 J, M. Ziman, Phys. Rev. 121, 1320 (1961); V. Heine, Phil.
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of their approach will be made below in the text of the
paper.

Scattering by the surface in thin wires and foils has
been found to produce deviations from MR. A review
of these phenomena has been given recently by Brindli
and Olsen.?”

Panova, Zhernov, and Kutaitsev® recently observed
a pronounced maximum in A(7") around 55°K in dilute
Mg-Pb alloys. They explained this maximum by pseudo-
localized modes associated with the Pb ions. Panova
and Samoilov® measured the effect of isotopic mass on
the resistivity of pure cadmium. They found heavy
isotope samples had a higher temperature dependence
of the resistivity below 100°K than did light isotope
samples. This result was ascribed to the increased
density of the low frequency portion of the phonon
spectrum which is of greater significance to the electron-
phonon scattering at very low temperatures.

In the present paper the deviations from MR in
dilute gold and platinum alloys are measured for the
temperature range between 1.6 and 373°K. The solute
concentration in the alloys varies in general between 0.1
and 5 at.%,. The deviations from MR for vacancies in
Pt, introduced by quenching, are measured between
1.6 and 295°K. Section II gives a description of the
experimental techniques. In Sec. III a method for
analyzing the data is presented which eliminates the
sensitivity of the results to the geometrical factors of
the samples without introducing any additional assump-
tions on the temperature dependence of A(7). The
experimental results, and comparisons with previous
work, are given in Sec. IV. A discussion of the results is
given in Sec. V.

II. EXPERIMENTAL PROCEDURE
Sample Holder and Cryostat

The sample holder, as shown in Fig. 1, is suspended
by thin-wall perforated stainless steel tubing from a

Fr1c. 1. Exploded perspective view of cryostat sample holder.

8 G. Brindli and J. L. Olsen, Mater. Sci. Eng. 4, 61 (1969).

3 G. Kh. Panova, A. P. Zhernov, and V. I. Kutaitsev, Zh.
Eksperim. i Teor. Fiz. 53, 423 (1967) [English transl.: Soviet
Phys.—JETP 26, 283 (1968)]; G. K. Panova and B. N. Samoilov,
ibid. 53, 1539 (1967) [English transl. : sbid. 26, 888 (1968)7].
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refrigerant well in the top of the cryostat. A copper plug
sealing the bottom of the well serves as the thermal
reference for the thermocouple junction. A bifilar
200-Q 5-mil manganin heater wire is wound around a
copper block which is designed to provide a symmetric
heat path to the samples. Six sample wires (five alloy
wires plus one wire of the pure solvent metal) are
electrically insulated from the block by cigarette paper
varnished on the block with GE No. 7031 varnish. A
frame holding 12 potential wire connections is mounted
parallel to the sample frame and separated from it by
two insulated copper blocks. A copper block, containing
the germanium resistance thermometer, closes the
assembly. Copper side plates act as radiation shields.

Electrical connections from the cryostat to the ex-
ternal circuitry are made with eight 10-mil and 11
S-mil copper wires, plus one 2.5-mil A%-2.1 Co thermo-
couple wire. These wires are clamped underneath two
copper plates against the lower external surface of the
heater block in order to equilibrate them at the copper
block temperature prior to bringing them to the
samples. In this way heat leakage from the sample
wires is prevented.

The cryostat is closed by a (ribbed) copper can with
a Wood’s metal seal. During the measurements the
system is evacuated to less than 10~* Torr. Below 77°K
the cryostat is immersed in liquid helium. For measure-
ments at higher temperatures either liquid nitrogen, ice
water, or heated water is used as a temperature bath.

Sample Description and Preparation

Most measurements were made on 10-mil poly-
crystalline wires obtained from commercial sources.?®
The solute concentrations of the alloys were ascertained
by wet chemical and neutron activation analyses. The
purity of the alloys and of the pure comparison wires
with respect to minor constituents was about 10 parts
per million for the platinum samples and two parts per
million for the gold samples. The wires were rinsed in
dilute nitric acid for 20 min, distilled water, and pure
alcohol prior to spotwelding into the sample frame. The
platinum (gold) wires were annealed by Joule heating
in air using direct current according to a schedule
starting at about 1500°C (950°C) and ending with a
24-h period at 900°C (750°C). Finally, they were cooled
to room temperature within one hour. The resistivity
ratios p(296°K)/p(4.2°K), obtained for the pure
platinum wires were in the range 4400 to 7400, while for
the pure gold wires the range was 1100 to 1400.

In the experiments with quenched Pt, the Pt wire was
heated to the desired prequench temperature by passing
a direct current through it. The heated wire was then
plunged into ice water with a quench rate of 5X10*°C/

3 The Pt-Au and the Au-Pt alloys were made by Baker-
Engelhard, Inc., Newark, N. J. The Au-Ag and Au-Cu alloys and
the pure Au specimen were made by Cominco American, Inc.,
Spokane, Wash. The Au-Co, Pt-Rh, pure Pt, and one Au-Ag
specimen were made by Sigmund Cohn, Inc., Mt. Vernon, N. Y.
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sec. The quenching technique has been described else-
where.® The quenched samples were mounted in the
cryostat and cooled to liquid nitrogen temperatures
within 90 min after quenching. The imperfections
introduced into Pt by quenching are the excess concen-
tration of lattice vacancies existing in thermal equi-
librium at the high prequench temperature. By the
rapid cooling the lattice vacancies are frozen into the
lattice. In platinum no annealing of quenched-in
vacancies occurs at room temperature.

The specific characteristics of the alloys investigated
are summarized in Tables I and II of Sec. IV.

The potential contacts were 2-mil pure gold or
platinum wires spotwelded to the sample and the
potential leads after annealing of the specimen wires.
These welds were made after the sample frame and the
potential lead frame were bolted together. Small offset
bends were formed into each end of the sample wires to
promote temperature uniformity during annealing, and
to minimize strain from mechanical stresses. The ends
of the sample wires were spotwelded to 20-mil gold or
platinum leads that passed through ceramic insulators
and were cemented to the sample holder.

Measurement System

For the resistance measurements conventional poten-
tiometric techniques were used. The voltage measure-
ments were taken with a Honeywell-Rubicon Model
2768 six-dial potentiometer. A Princeton Applied
Research Model TC100.2BR regulated power supply
provided a stable 30-mA sample current. The current
drift was less than 4 parts per million over several days.
A Keithley Model 147 null detector provided better
than 0.01-uV resolution for the potentiometer. The
effects of thermal emf’s on the calculated sample
resistance were eliminated by reversing the current. To
enable rapid and convenient current reversal without
introducing an asymmetric current increment, a special
reversing switch was made employing four Potter and
Brumfield Model JML-5430-82 mercury-wetted contact
relays controlled by two latching relays. The contact
resistance of the mercury-wetted relays was found to be
far more stable and reproducible than dry contact
switches or relays. By using the mercury-wetted relays,
and their driver relays, in a latching mode of operation
no thermal dissipation occurs in the relays except during
the instant of switching; hence, effects of any thermal
emf’s were insignificant in the sample current circuit.
Switching of the potentiometer input to the different
samples and reversing the polarity were accomplished
with two two-ganged, 10-position, Chicago Dynamic
Industries No. TSDP10A gold-plated printed circuit
switches. The thermal emf’s of these simple, inexpensive
switches were less than 0.01 uV.

“ R. P. Huebener, Phys. Rev. 135, A1281 (1964).

4 ]J. J. Jackson, in Proceedings of the International Conference

on Latiice Defects in Quenched Metals (Academic Press Inc.,
New York, 1965), p. 467.
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The temperature in the cryostat was measured below
20°K  with a Honeywell MHSP2401 germanium
thermometer and above 20°K with a A#-2.1Co versus
Cu thermocouple. The voltages were measured with a
Leeds & Northrup K3 potentiometer. The precision of
the germanium thermometer is of the order of 0.1°K.
The Au-Co thermocouple calibration by the NBS# was
employed for temperature conversion. The initial
accuracy of the thermocouple was good, about 1-29,.
However, in the course of the experiments, the thermo-
couple accuracy deteriorated somewhat. Therefore,
above 20°K the electrical resistance of the pure com-
parison sample was used as a thermometer. For the
platinum experiments, a resistivity-versus-temperature
calibration of the NBS was employed; for the gold
experiments, the data of Onnes® were used.

The temperatures measured with the germanium
thermometer matched within 1 deg those indicated by
the thermocouple or the resistance measurements in the
temperature interval of overlap (15-20°K). In the
heated water bath measurements the temperatures
calculated from the resistance of the pure samples
agreed within § deg or better with the temperature
indicated by mercury immersion thermometers. The
temperatures used in the final data presentation are
believed to be correct in absolute value within 1 deg
above 30°K, and within % deg below 30°K.

A temperature stability approaching 0.001 deg was
achieved in the cryostat by an inverse feedback control
system that consisted of the A#-Co thermocouple, a
Leeds and Northrup K3 potentiometer, a Keithley
Model 149 millimicrovoltmeter serving as null detector,
and a Hewlett-Packard/Harrison Model 6258A power
supply which provided the heater current. This system
attained the dynamic control plateau without over-
shoot or hunting, yielding temperature constancy
almost two orders of magnitude better than manual
control.

Data-Taking Techniques

Inherent in the data analysis method finally adopted
to calculate the deviations from MR from the basic
resistance information is the presumption that the
resistances of the different samples are measured at the
same temperature. This requires that a well-equili-
brated isothermal condition in the sample holder be
achieved and maintained experimentally. Using the
temperature control system described above, such a
condition could be achieved in 15-30 min for tem-
peratures below 270°K. The data taken between room
temperature and 373°K were obtained using an external
hot circulating water bath. As long as 2 h were required
to reach a satisfactory equilibrium in this case, and the
degree of temperature stability was about two orders of

4 1(2 L. Powell, M. D. Bunch, and R. J. Corruccini, Cryogenics

1, 1 (1961).
3: 8 Kamerlingh Onnes and W. Tuyn, International Critical
Tables (McGraw-Hill Book Co., New York, 1929), Vol. 6, p. 124.
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magnitude worse than in the measurements below
273°K. This is evident in data scatter apparent in the
high-temperature results.

After equilibrium at the desired temperature was
reached, the measurements were taken according to the
following sequence: (1) current for both current direc-
tions, (2) sample voltage for both current directions for
all samples, and (3) current for both current directions.
Temperature measurements were made prior to each
polarity of each current and voltage measurement.
Thus the resistance of the individual samples, with
respect to that of the pure comparison sample, could be
corrected for current and temperature shifts by using
interpolation subroutines incorporated into the FORTRAN
program which computed the resistance from the raw
data. The interpolation corrections to the resistivity
were usually less than 0.03%,.

In order to calculate the ratio of the length / of the
sample to the cross-sectional area A, which ratio is
known as the geometrical factor G=1I/4, the length of
the sample wires between the potential probes was
measured with a traveling microscope, and the cross-
sectional area was determined by weighing out sections
of the wire with known length. The densities of the
alloy samples were computed from known values of the
lattice constants,* and the chemical assays of the solute
concentrations. The precision of the measurements
allowed determination of the geometrical factor to about
3% accuracy.

The effect of thermal expansion on the pure and
alloyed samples introduces a correction to the measured
deviations from MR of at most 29,. This was deemed
small enough to be neglected in the data analysis. The
correction is this small because of the data analysis
procedure employed, as discussed below. Likewise, the
effect of volume expansion of the quenched samples due
to the formation of lattice vacancies is negligible for the
vacancy concentrations actually introduced (being
approximately one-tenth the magnitude of the thermal
expansion correction).

III. ANALYSIS OF DATA IN MATTHIESSEN’S-
RULE EXPERIMENT

The information experimentally available is the
electrical resistance of the various samples as a function
of temperature. Matthiessen’s rule deals with the differ-
ence in the electrical resistivity between two different
samples. Thus, the geometrical factor, the ratio of the
sample length to cross-sectional area, G=1/4, is needed
for each sample to calculate resistivity differences.
Small errors in the determination of the geometrical
factor can lead to serious errors in the determination of
A(T) from resistance values.®s For the temperature

“W. B. Pearson, Handbook of Lattice Spacings and Structures
of Metals and Alloys (Pergamon Press, Inc., New York, 1958), pp.
429, 441, 820.

% P. Alley and B. Serin, Phys. Rev. 116, 334 (1959).
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range in which psotvent(7)>>A(T), the errors can be very
large, and furthermore introduce a fictitious tempera-
ture dependence of A. To circumvent this source of
error, Alley and Serin,* as have others,** have nor-
malized resistance data by dividing by the ice-point
values, which cancels the geometrical factor, presuming
thermal expansion effects to be negligible. In some of
the normalization methods presented in the litera-
ture,347 the geometrical factors of the samples were not
actually eliminated from the analysis. The normaliza-
tion process of Alley and Serin makes it necessary to
either know the deviations from Matthiessen’s rule at
the ice temperature or else the temperature dependence
of the deviations in that temperature neighborhood in
order to calculate the deviations over the entire tem-
perature range. In order to obtain the deviation at the
ice point, Alley and Serin introduced the additional
assumption that the deviations from Matthiessen’s rule
are independent of temperature in the temperature
interval between the ice point and the boiling point of
water. It will be shown below that this assumption is
not necessary to analyze the data, and moreover may
be incorrect in some cases.

Following the literature motivations we normalize the
resistance data by dividing by the ice-point resistance.
In addition, we subtract the residual resistance in
numerator and denominator for both the alloy sample
and the pure sample. This yields the following quantity
which is well-defined experimentally, and which is not
a function of the geometrical factor, presuming thermal
expansion effects to be negligible:

Ri{(T)—R;(0)  Ri(T)—Rx(0)

STEWART AND R. P.
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Fig. 2 for a series of platinum alloys. A nonzero value
of §;(T) immediately implies a deviation from Mat-
thiessen’s rule which can be shown as follows. We have
from Eq. (2)

pi(T) =pe(T)+p;(0)+A(T).

Thus, neglecting any deviations from MR for the
comparison sample, A;(T), Eq. (4) can be rewritten

pe(T)+AT)  pu(T)

or(ice)+A(ice) B ox(ice)

which is a theoretical quantity. From Eq. (5) we see that
8;(T)#0, if A(T)==0.

There are two unknowns in Eq. (5), A(T) and A(ice).
If A(ice) can be determined, then A(7) is immediately
given for all 7 since the left-hand side of Eq. (5) is
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The subscripts 7 and % refer to the alloy and the pure
comparison sample respectively.® Obviously, §;(0)
=§;(ice) =0. The variation of §; with T is shown in
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F16. 2. Temperature dependence of (7))
for the platinum alloys of run MR®6.

46 P, G. Klemens and G. C. Lowenthal, Australian J. Phys. 14,
352 (1961).

47 Yu. N. Tsiovkin and N. V. Volkenshtein, Zh. Eksperim. i
Teor. Fiz. 48, 796 (1965) [English transl.: Soviet Phys.—JETP
21, 527 (1965)7.

48 This choice is made to correspond to the fixed point variable
naming convention of Fortran. The mnenomic k=komparison
is helpful.

F16. 3. (#,9) plot for the platinum alloys of run MR®6.

directly known from experimental data. The terms in
(5) can be rearranged into the form

8;(T)px(ice)
8;(T)+px(T)/pr(ice)
= A(

—A(ice). (6)

T)aj(T) +pi(T)/pr(ice)
If we define the two known quantities
B 8;(T)px(ice)

8 (D)D) palice)

u(T)

and

o(T)
Eq. (6) becomes

0D Fon (D) palice)”

u=A(T)v—A(ce). (7

This useful equation, which will be referred to as the
(u,v) equation henceforth, is the solution to the problem
provided A(ice) can be found. Since # and v are known
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experimentally, v can be plotted versus «. A set of (u,v)
loci for several platinum alloys is shown in Fig. 3.
Because v is approximately the normalized conductivity
of the comparison sample, increasing v corresponds to
decreasing temperatures. The data in the figure cor-
responds to temperatures higher than 50°K. By virtue
of the definitions of §, #, and v, the loci for all samples
will pass through the point (0,1) in the (#,v) plane. Note
by inspecting (7) that, if the A(7") are constant in the
high temperature range, the extrapolated intercept of
the (u,v) loci on the % axis, (v=0), is a direct measure of
A(ice). Further, we note that if A(7) is constant in the
high-temperature range then the (u,9) loci will be a
straight line with no curvature. However, it can be
shown?® that if p;(T), pr(T), and A(T) are linear func-
tions of temperature that the slope of the (%,) curve
will be constant even though A(7) is not. This particu-
lar case corresponds to (7) representing an exact
differential equation. However, in such a case the func-
tion § as given by the experimental data and Eq. (4)
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rivatives.

should be zero for all temperatures. In no case did we
actually find 6(7") =0 for all 7. This we interpret as due
to the presence of terms of second and higher order in
the resistivities. These terms essentially lift the exact-
ness condition, and more important suggest that A(7)
can be obtained from the slope and curvature of the
(u,v) curve.
Suppose we differentiate (7) twice, yielding

du dA
— =A(v)+v— (®)
dv dv
and
du  dA A
— =2— 4. 9)
dv? dv dv?

These relations are useful since u, du/dv, and d?u/dv?
can be found from the experimental (%,2) curve either
graphically, numerically, or by polynomial fitting and

9P, G. Klemens (private communication). The smoothing
routines used in the analysis of the data were developed by R. W.
Prince of Lockheed Aircraft Corporation.
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F1c. 5. (#,9) and the first two derivatives for the thermocouple
alloy Pt+9.8 Rh. Note the extremely small effect of an exact
calculation of the thermal expansion corrections on this method
of analysis.

smoothing procedures. Typical curves for #(v), du/dv,
and d?/dv? are shown in Figs. 4 and 5. Now focusing
our attention on the variations in the (#,v) curve near
the ice temperature, 7 (ice), we assume that A(v) can be
expanded as a Taylor series using three terms in the
series,

(-1

) . (v—1)2
A(v)=A(ice)+ TA’ (ice)+

21

9—1)3

XA (ice)+ A" (ice). (10)

3!

This expression can be differentiated twice to obtain
equations for dA/dv and d2A/dv?, which can then be
substituted into (9), which, on combining terms with
like powers of v, yields

dPu/dvr=[24' (ice) —2A" (ice) +A"" (ice) ]
+o[3A" (ice) —3A"" (ice) J+a2[ 24" (ice) ].

This is a useful equation since the coefficients in the
brackets can be obtained experimentally from the
least-square polynomial expansion of the second deriva-
tive, namely,

Pu/drr=A¢+Aw+A49°. (11)
Therefore,
A" (ice)=34,, (12)
A" (ice) =341+34., (13)
A" (ice) =340 t34:1+142. (14)

Knowing this last quantity is the key to the problem,
since A(ice) can be deduced from (8) evaluated at the
ice temperature,

du dA
A(ice)= — —— (15)
dT) T ice d'l) T ice

With A(ice) also known it is possible to reconstruct
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A(T) by rewriting (5) in the form
A(ic

A(T) =8,(T)pulice) +Aice) 1+ ,ezpkm. (16)

prlce

Once A(ice) is known, this is a definitive equation for
A(T) since all other quantities in the equation are
known experimentally. This equation will retain the
full structure inherent in the data in temperature
regions of rapid change since no derivatives are con-
tained which involve data at different temperatures.

An alternative to differentiating the (u,v) curve twice
as needed by the prior procedure, is to take the third-
order expansion of A(v), (10), and substitute that into
the (u,%) equation which yields an equation which is
fourth order in v. In addition, one can also fit the experi-
mental (u#,9) loci with a fourth-order polynomial in v.
This essentially over constrains the solution since there
are four unknowns and five experimental coefficients.
An internal check of the validity of the previous ex-
pansions, such as (10), consists of comparing the two
values of A(ice), which can be found by this method.
If we let

u=A¢+A41v+A4 224450344 2t )

and compare coefficients term by term with those
obtained by substituting (10) into (7), we obtain

A (ice)=—4,, (18)
A" (ice) =644,

A" (ice)=24;+6A44,

A (ice)=As+245+344,

A (ice)=A1+AstAs+As. (19)

By numerically comparing (18) and (19) as thus ob-
tained from fourth-order least-square polynomial fits
to the experimental (u,2) curves, the average percent
difference in the Af(ice) values was 0.329, for all
samples, while the largest difference was 1.5%. This
suggests a high degree of internal consistency of the
method.

The agreement of the A(ice) values obtained by the
derivative fitting procedure, Egs. (10)-(15), and those
obtained by fitting the (u,9) curve directly, Egs.
(17)-(19), varied from a few percent for some samples
to perhaps 30% for others. The problems involved in
smoothing and differentiating noisy data are non-
trivial. Figure 4 shows the large difference in the first
and second derivative resulting from using the basic
arithmetic definition of the derivative directly, or first
smoothing the raw data and obtaining the derivative
from the expansion of the fitting polynomial. Smoothing
and differentiating are not commuting operations. Our
results suggest that smoothing is best done after
differentiating, otherwise high-order derivatives will
vanish above the order of the fitting polynomial.®

The measured geometrical factors enter the analysis

R. G. STEWART AND R. P. HUEBENER 1

by the (u#,9) method only through pj(ice), and hence
only through the comparison sample. The geometrical
factor for that sample then acts as a gross scaling factor
for A(T), rather than being a highly critical quantity
along with the geometrical factor of the alloy sample,
for determining, the temperature dependence of A(7).
This is a major advantage of this mode of analysis. To
test the sensitivity of the (%,9) method to the tempera-
ture dependence of the geometrical factor of the alloy
sample compared with that of the pure comparison
sample, the Griineisen equation for the lattice specific
heat was numerically integrated to obtain the change
of the thermal expansion coefficient with temperature.
This was done for MR6-1, the P-Rh sample, and the
results are shown by the circular data points in Fig. 5.
By comparing them with the uncorrected points it is
evident that the thermal-expansion differences are
small enough to be neglected.

In the case of the quenched samples the geometrical
factor relative to the pure sample can be obtained by
electrical resistance measurements prior to quenching
to about one order of magnitude higher precision than
by length measurements and weighing. The value of the
deviation from MR at the ice temperature obtained in
this way for the quenched sample MR1-1 is A(ice)
=0.0235 u2 cm, which is within the error limits of the
values obtained by the (#,9) method.

IV. EXPERIMENTAL RESULTS

The electrical resistance of ten gold alloys and nine
platinum samples was measured as a function of
temperature. The initial voltage, current, and ther-
mometer data were analyzed into resistivity versus
temperature, which was then listed, plotted, and
punched using a FORTRAN program on a CDC 3600
computer. This basic data deck was then treated by
several alternative interpretation subroutines, as for
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F16. 6. A(T)/p; (0) versus temperature for a series of gold-platinum
alloys and one gold-silver alloy (run MR3).
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TazsLe 1. Gold alloys.
A(ice)
or
Residual p(ice)
Solute resistivity (u2 cm) A(ice)/p(0)
Sample concentration  p(0) p(0)/c Value, rms A(ice) /¢ Value, rms Low-T
number Solute (at. %) (u2 cm) (uQ cm/at. %) deviation (uQ cm/at.%) deviation power law
MR3-1 Ag 0. 25”! 0.0805 0.32 0.0053-£0.0012 0.021 0.066 £0.015 2.9
MR3-2 none ‘&4, 0.00158 2.042 cee o see cee 3.9
MR3-3 Pt 0.10 a: 0111 1 11 0.0137 0.0018 0.137 0.123  0.016 2.8
MR3-4 Pt 0.50 &, 0.480 0.96 0.0564 % 0.0035 0.128 0.117  0.007 3.2
MR3-5 Pt 1.03 0.980 0.95 0.0971%0.0073 0.094 0.099  0.008 3.2
MR3-6 Pt 498 E4.82 0.97 0.1522 § 0.0110 0.032 0.031  0.002 3.2
MR4-1 Co 21 . 2.62 1.25 242 g 0.22 1.21 0.923  0.084 3.5
MR4-2 none .. 0.00196 e 2.033 ‘e ‘.- .- 41
MR4-3 Cu 0.10 ¢gd 0.0340 0.34 0.0028 0.0008 0.028 0.082  0.023 3.2
MR4-4 Cu 0.98 0.222 0.23 0.1152 0.014 0.118 0.520  0.063 3.7
MR4-5 Ag 0.09 0.0320 0.36 0.0024 0.0009 0.027 0.075 0.028 3.0
MR4-6 Ag 0.94 EE0.292 0.32 0.0194 0.0025 0.021 0.0664 0.009 3.3
TasiE II. Platinum alloys.
A(ice)
or
Residual p(ice)
Solute resistivity (u2 cm) A(ice)/p(0)
Sample concentration p(0) 0(0)/c Value, rms A(ice)/c Value, rms Low-T
number Solute (at.%) (u cm) (uQ cm/at. %) deviation (u2 cm/at. %) deviation power law
MR1-1 vac. 0.016# 0.0654 4.0 0.0238-:0.002 1.49 0.364+0.031 3.2
MR1-2 none 0.00226 = 9.85 e e ‘.- ‘.- 3.6
MR1-3 vac. 0. 041a 0.165 4.0 0.0447 0.002 1.09 0.369 0.017 n.a.b
MR2-1 vac. 0.026# 0.107 4.0 0.0260 0.002 1.00 0.243 0.019 2.4
MR2-2 none ‘.- 0.00146 .. 9.81 e e ‘.- e 3.9
MR2-3 vac. 0.026= 0.105 4.0 0.0186 0.002 0.71 0.177 0.019 34
MR6-1 Rh 9.07 6.91 0.76 0.744  0.066 0.82 0.108 0.0096 n.ab
MR6-2 none e 0.00249 . 9.89 e e e e 3.7
MR6-3 Au 0.09 0.432 4.8 0.0412  0.0096 0.46 0.095 0.022 3.4
MR6-4 Au 0.45 0.960 2.14 0.0848 0.0096 0.189 0.088 0.010 3.4
MR6-5 Au 0.88 1.57 1.79 0.160 0.018 0.182 0.102 0.012 3.4
MR6-6 Au 4.84 6.64 1.37 0.452 0.031 0.093 0.068 0.005 3.4

a Obtamed by assuming Ap/c =4.0 uQ cm/at.%.
b Not applicable—A(T) versus T cannot be fit by power law.

example the (#,2) method, to obtain the deviations from
MR presented here.*®

Gold Alloys

The gold alloys studied were selected to evaluate the
effect of valence and mass differences between the
solute atoms and the solvent gold lattice. A synopsis of
the characteristics of these alloys is given in Table I.
The temperature dependence of the deviations from
MR divided by the residual resistivity for the gold-
platinum alloys and one gold-silver alloy is presented
in Fig. 6. The label on each curve indicates the type and
concentration in atomic percent of the solute. The
general trend of A(T) is a rapid rise in the temperature
interval between 10°K and 30 to 60°K followed by a
saturation in the room-temperature range, where A(T)

% Complete tables of p;(T") versus 7', and A(T) versus T for all
samples, as well as the FORTRAN program listings, are contained in
the appendices of the thesis. Copies are available from University
Microfilms, Inc., Ann Arbor, Mich.

is approximately constant and MR is valid in differ-
ential form. A peak at about 40°K is evident in the
deviations of the two lowest concentration alloys. It is
evident by inspection of the figure that A(7) is not a
linear function of solute concentration c¢. Since p(0) was
found to be directly proportional to the measured
concentration ¢ for the gold-platinum alloys, if A(T)
were also proportional to ¢, the A(T)/p(0) loci should
superimpose, which they clearly do not. The values of
A(ice) and the ratios A(ice)/p(0) and their rms devi-
ations, for the different alloys are given in Table I. The
rms deviations of A(ice) in Tables I and ITI are based on
approximately 12 variations of the smoothing, curve
fitting, and differentiating procedures used in treating
the basic data in the (#,v) method of analysis. Figure 6
also shows that 0.1 at.9%, Pt in gold yields a larger
deviation from MR than 0.25 at.9%, Ag. However, the
general form of the curves is similar for both solutes.

Figure 7 contains the comparable plots for gold alloys
containing cobalt, copper, and silver solutes. The gold-
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Fic. 7. A(T)/p;(0) versus temperature for gold alloys containing
cobalt, copper, and silver as solutes (run MR4).

cobalt alloy is a standard thermocouple alloy. As Table
I shows, its room temperature deviation per at.9,
solute is about 10 times greater than that of the alloy
containing 1 at.%, copper and comprises one-third of
the total room-temperature resistivity. The shape of the
curve for the gold-cobalt alloy in the low-temperature
range is distinctly different from that of the copper and
silver solute alloys. Its temperature dependence is not
well matched by a KSW-type equation. It is evident
from Fig. 7 that the gold-copper alloys have deviations
several times larger than the gold-silver alloys for
comparable solute concentrations. Again a distinct peak
is evident at about 40°K for the two low concentration
copper and silver solute alloys. A broader peak, of
approximately the same absolute magnitude in A(T) but
smaller relative magnitude in A(T)/p(0) exists in the
curves for the 0.945 at.9 silver solute alloy. The peak
in the latter alloy appears to be shifted about 15°K
upward in temperature.

A plot of the deviations from MR as a function of
solute concentration for the A#-Pt alloys at different

) s B N R

Deviations from M R vs Solute Concentration
MR3, AuPt Alloys

ol2

004

STEWART AND R. P. HUEBENER 1

temperatures is given in Fig. 8. It shows that A(T) is
nonlinear in solute concentration ¢. At very low tem-
peratures the deviations are essentially independent of
solute concentration. At high temperatures they tend
to saturate at a concentration of a few at.9,. The low
temperature peak is certainly not proportional to
solute concentration.

Comparison of our results with previously published
deviations from MR for similar gold alloys shows that
in some cases significant differences exist. Damon and
Klemens® obtained A(ice) =0.045 uQ cm for A#-2.6 Cu
alloy, whereas, we find A(ice)=0.115 uQ cm for a
Au-1.0 Cu alloy, which is relatively 6.6 times larger.
The plot of A(T") versus temperature they give for
Awu-1.0 Pt has a pronounced positive slope and yields
A(ice) =0.125 uQ cm. However, a curve they give for a
higher Pt solute concentration alloy, 4#-1.6 Pt, has a
negative slope and a smaller value of A(ice), namely,
A(ice)=0.085 uQ cm. In comparison we find for a
Awu-1.03 Pt alloy, A(ice) =0.097 u© cm, and for Au-4.98
Pt, A(ice)=0.152 uQ cm, with a small positive tem-
perature dependence of A(T) in the high-temperature
range.

Krautz and Schultz” studied the deviations from MR
in a A#-1.0 Ag alloy, seeing a sharp peak at 50°K
followed by a plateau with A(ice)/p(0)=0.075, which
isin good agreement with the value of 0.066 we obtained
for the A#-0.94 Ag alloy. Also, the magnitude of the
peak found by Krautz and Schultz after subtracting a
KSW term in the way mentioned in Sec. I, is about the
same as ours. The electrical resistivity in the A#-Co
system has been measured recently by several authors.
Domenicali and Christenson,? in studying the effect of
transition metal solutes on the electrical resistivity of
copper and gold, found a large negative deviation from
MR for Au-2.1 Co [with A(ice)=—1.75 u@ cm] and
Au-4.3 Co. At low temperatures Van Den Berg ef al.5!
and Ford ef al.”* found resistance minima in the 4A#-Co
system for cobalt concentrations larger than about
0.2 at.9,. On the other hand our measurements indicate
a positive deviation from MR for the sample 4%-2.1Co
in the temperature range between 1.6 and 373°K. The
residual resistivity p(0)=2.62 uQ cm we measured for
the Au-2.19, Co specimen is by a factor of about 4.5
smaller than the value obtained by the authors listed
above.® This indicates that in our A#-Co sample the
Co concentration is appreciably smaller than its nominal
value or that the Co admixture was precipitated into
clusters. The latter possibility seems to be more likely
since our specimens had been slowly cooled down after
the annealing (Van den Berg ¢t al., Ref. 51).

I7°K
1 | 1 1 1 1 1 ]
[} I 2 3 9 5

CONCENTRATION AT. % PLATINUM IN GOLD

F16. 8. Deviations from MR at fixed temperatures as a function
of solute concentration for gold-platinum alloys (run MR3).

51 C. A. Domenicali and E. L. Christenson, J. Appl. Phys. 32,
2450 (1961); G. J. Van den Berg, J. Van Herk, and B. Knook, in
Proceedings of the Tenth International Conference on Low Tem-
perature Physics, Moscow, 1966, edited by M. P. Malkov, Vol. 4,
p. 272; P. J. Ford, T. E. Wall, and J. W. Loram, in Proceedings of
the Eleventh International Conference on Low Temperature Physics
(University of St. Andrews Printing Department, 1968), p. 1246.
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Platinum Alloys

The characteristics of the platinum-gold alloys and
the quenched platinum samples are given in Table II.
The solute concentration of the Pi-Au samples given in
Table I (and in Figs. 2, 3, and 10) are those stated by
the supplier. These samples were also analyzed by
neutron activation and yielded for samples MR6-3,
MR6-4, MR6-5, and MR6-6 the solute concentrations
of 0.107, 0.472, 1.03, and 4.76 at.9, respectively. The
vacancy concentration in the quenched samples was
deduced from the residual resistivity, p;(0), using the
value Ap/c=4 uQ cm/at.9, for the vacancy resistivity
(which may be wrong by a factor of 2) given by Hue-
bener.?? By comparison, Kraftmaxer and Lanina® give
Ap/c=2.4 uQ cm/at.%,. The plots of A(T)/p(0) for the
quenched platinum samples are given in Fig. 9, and for
four platinum-gold alloys and one standard thermo-
couple platinum-rhodium alloy in Fig. 10. The minimum
evident in A(T)/p(0) for sample MR1-1 with 0.016 vac.
at about 140°K reproduced itself in a second series of
measurements. Such curious behavior of A(7") has been
observed in the past. For example, Gerritsen and
Linde® observed double peaks in Cu-Mn alloys. The
remainder of the quenched samples shows a definite
peak in the deviations from MR in the range 40-60°K,
followed by a shallow minimum at 80-100°K and a
gradual rise and leveling off at room temperature.

The deviations for the P{-Au alloys in Fig. 10 are
quite similar to those of the Ax-Pt alloys of Fig. 6.
Again a peak is evident in the low concentration alloys
at about 50°K. Again the transition metal solute alloy,
Pt-Rh, shows a distinctively different shape in the low
temperature range than do the others. Again the solute
concentration dependence of the deviations from MR
is nonlinear. The similarity of the deviations from MR
of the Au-Pt alloys to those of the Pi-Au alloys is
surprising in view of the drastic differences in the
electronic band structure of the solvent metals,?:55 and
the impurity potential. Further, the low temperature peak
in the platinum samples at about 40°K is not shifted by a
change in imperfection from a vacancy with a large mass
difference relative to the host lattice to a gold atom with
virtually no mass difference.

Low Temperature Dependence of A(T)

The columns labeled ‘“Low-T power law’’ in Tables T
and II represent the slope # of straight lines fitted to
plots of logA(T’) versus log7 in the temperature range
below 30°K. Thus 7 is the power of T in an expression
A(T)=aT=, where a is some constant. The same in-
formation is given for the resistivity of the pure com-

52 R. P. Huebener, Phys. Rev. 146, 490 (1966).

( ¥ Ya. A. Kraftmaxer and E. B. Lanina, Fiz. Tverd. Tela. 7, 123
1965).
( %M. D. Stafleu and A. R. de Vroomen, Phys. Letters 19, 81
1965).

% J. B. Ketterson, M. G. Priestley, and J. J. Vuillemin, Phys,

Letters 20, 452 (1966).
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F16. 9. A(T)/p;(0) versus temperature for lattice vacancies
in quenched platinum (runs MR1 and MR2).

parison samples. The tabulated values of # average 3.22
for the deviations from MR of the platinum samples
whereas the mean value of # for the resistivity of the
pure comparison platinum samples was 3.73. For the
gold samples the mean value of # of the deviations was
3.20, whereas that for the resistivity of the pure samples
was 4.0. Note that the latter value indicates one power
of T less than the Bloch-Griineisen predicted resistivity
temperature dependence of #=>5.0. It is apparent from
the tables that in every case the value of n obtained for
A(T) of the impure samples is significantly lower than
that for the resistivity of the pure samples. This implies
that an equation of the KSW form [which predicts
A(T)~px(T) at low temperatures ] is not wholly valid.

Our observed values for % of the deviations from MR
are 20% lower than the value n =4 suggested by Damon,
Mathur, and Klemens.3¢ Note that this is the same
percentage lower that our observed % for ideal lattice
resistivity is lower than the Bloch-Griineisen value.
Possibly this may be a consequence of our temperature
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Fr16. 10. A(T)/p;(0) versus temperature for platinum-gold
and platinum-rhodium alloys (run MR6).
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F1c. 11. A(T) versus InT for gold-cobalt
and platinum-rhodium alloys.

interval (10-30°K) chosen for data analysis which is
closer to the linear range of the ideal resistivity than
that of Damon, Mathur, and Klemens.

A plot of A(T) versus In7 is shown in Fig. 11 for the
Au-2.1Co and P#-9.1Rh alloys. The curves for both
alloys can be fitted with a straight line from about
30-200°K.

Ratio of A (ice) to Residual Resistivity

The ratio of the deviations from MR at 273.2°K to
the residual resistivity for the different samples is given
in Tables I and II. This ratio, which we shall call «,5¢
varies over an order of magnitude from 0.031 for
Au-4.98Pt to 0.92 for Au-2.1 Co, or 0.52 for A#-0.98Cu,
or 0.36 for two Pt-vacancy samples. The ratio « in
Au-Cu is noticeably higher than in 4#-Ag. Vacancies
in Pt cause a relatively higher ratio « than do any of the
substitutional element solutes. We note the following
dependencies of o with solute concentration ¢. For
Au-Pt and Pi-Au, a decreases with increasing c. For the
three Au-Ag alloys, a is approximately independent of c.
For the two Au-Cu alloys, « increases by a factor of
6 as ¢ changes from 0.1 to 1%,.

V. DISCUSSION
Au, Ag, Cu, and Pt as Solutes

The temperature dependence of the deviations from
MR found in the alloys containing Au, Ag, Cu, and Pt
as solutes follows approximately a Kohler-Sondheimer-
Wilson equation, which predicts a relatively sharp rise
of A with increasing 7 at low temperatures and a
temperature-independent behavior at high tempera-
tures. Superimposed on this behavior, a sharp peak
occurs in the A(7") curves for the low solute concen-
trations at about 30-50°K. Such a peak has been
predicted by Sondheimer® on the basis of higher-order
terms in the solution of the Boltzmann equation. The

% o is approximately equal to the constant 8 in the KSW
equation.
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contribution to A calculated by Sondheimer has a peak
at the temperature where the solute resistivity and the
impurity resistivity are equal. The peak which is
superimposed on a KSW-type behavior in the low solute
concentration alloys at low temperatures indeed occurs
at the temperature where the residual resistivity
approximately equals the ideal resistivity, p;(0) = px(T).
The Sondheimer contribution to A has an upper limit
which is given by the Sondheimer correction term to the
electrical resistivity of the solvent metal. This may
explain why the low-temperature peak in the A(T)
curves occurs only in the low solute concentration
alloys and vanishes apparently for higher solute con-
centrations. In the alloys with higher solute concen-
trations the Sondheimer contribution to A(7) may
still exist, but its contribution to A may be invisible.
Further, because of the condition p;(0) = px(T"), the peak
shifts with increasing solute concentration to higher
temperatures, where the Sondheimer contribution to A
is relatively small to begin with.

Because of the arguments given above, it appears
that the peak in the A(T) curves at low temperatures
can be explained by the Sondheimer contribution to A
superimposed on a KSW-type behavior. Such an inter-
pretation has been given by Krautz and Schultz’ to
their A(T) curves for Au-1.0 Ag and Ag-0.6 Au, which
showed a similar peak at low temperatures. However,
according to Sondheimer the magnitude of the con-
tribution to A considered here should be of the order of
19, of the residual resistivity p(0). As seen from Figs. 6
and 7, the peak in the additional contribution to A can
be as high as 209, of p;(0). Alley and Serin expressed
doubt about the existence of the maxima in the A(T)
curves reported by Krautz and Schultz. They pointed
out that these maxima may represent a fictitious tem-
perature dependence introduced by uncertainties in the
geometrical factors of the samples. The present experi-
ments and those of Dugdale and Basinski® do not leave
any doubt about the existence of these maxima.

Except for the low-temperature maximum in the low
solute concentration alloys, the A(7) curves follow
approximately the KSW-type behavior indicated in
Eq. (3). Assuming that the KSW-type behavior is
based on a two-band conduction mechanism as dis-
cussed by Sondheimer and Wilson® (including the
possibility that different sections of an anisotropic
Fermi surface of a single band can act like different
bands), the following expressions for the constants 8
and v in Eq. (3) can be found®:

1/A—u\2
=), (20)
AM1-+u
1/A—u\2
y=_(__). (21)
AN B DN
Here
A= (0'2/0'1) impurity (22)
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TasLe III. Coefficients fit to the KSW equation at Tiow and Tice.

Tiow General
Sample Solvent Solute (°K) B v A ® N validity of fit
MR1-1 Pt 0.016 Vac. 20 0.371 0.120 0.055 —0.077 — 0.710 poor
MR1-3 Pt 0.041 Vac. 30 0.273 0.602 0.597 0.137 4.34 poor
MR2-1 Pt 0.026 Vac. 20 0.243 0.565 0.520 0.121 4.29 poor
MR2-3 Pt 0.026 Vac 20 0.176 0.941 0.244 0.031 7.98 poor
MR3-1 Au 0.25 Ag 10 0.067 0.368 0.096 0.015 6.43 fair
MR3-3 Au 0.10 Pt 20 0.123 2.62 0.134 0.005 27.4 fair
MR3-4 Au 0.50 Pt 20 0.120 1.32 0.142 0.010 141 good
MR3-5 Au 1.03 Pt 40 0.105 0.783 0.136 0.015 9.32 fair
MR3-6 Au 498 Pt 40 0.036 0.602 0.041 0.002 18.0 fair
MR4-1 Au 2.1 Co 20 1.04 9.89 0.870 —0.041 —21.3 fair
MR4-3 Au 0.1 Cu 10 0.083 0.329 0.138 0.028 4.87 poor
MR4-4 Au 0.98 Cu 30 0.529 2.35 0.715 0.062 11.6 very good
MR4-5 Au 0.09 Ag 10 0.075 0.403 0.109 0.017 6.37 good
MR4-6 Au 0.94 Ag 20 0.067 1.74 0.072 0.002 29.8 fair
MR6-1 Pt 9.07 Rh 10 0.149 0.272 0.464 0.159 291 very good
MR6-3 Pt 0.09 Au 20 0.096 0.967 0.115 0.009 12.3 fair
MR6-4 Pt 0.45 Au 20 0.089 0.728 0.113 0.011 9.88 good
MR6-5 Pt 0.88 Au 30 0.104 0.672 0.141 0.017 8.09 good
MR6-6 Pt 4.84 Au 40 0.075 0.515 0.099 0.012 8.14 fair

and and (21) by
M= (0'2/0'1)phonon (23) 6"‘\“)\ and ’Yz)\2//.l,. (26)

are the ratios of the conductivity in band 2 and band 1
for scattering by impurities and by phonons, respec-
tively. By fitting the experimental A(T) curves with
Eq. (3), the constants 8 and vy have been calculated
from the data at or near 20 and 273°K. Subsequently,
the parameters A and u have been calculated by invert-
ing Egs. (20) and (21), which yields®

A=1+43lat3a(1+4/a)? (24)
and

p=1+1p-£16(144/b)12 (25)

The terms ¢ and b are defined by
a=(y—B—B7)*/By’, b=B—v—B)"/v6"

The parameters 3, v, A, 4, and A/u obtained in this way
are summarized in Table ITI. The negative values of y
and u shown in a few cases are caused by the peak in the
A(T) curves at low temperatures, which the KSW
equation with constant coefficients cannot fit.

In principle, one can also explain the low-temperature
maxima in the A(T) curves for the low solute concen-
tration alloys using the two-band model alone. For this
purpose we need only a proper temperature dependence
of the coefficients 8 and v, and therefore of A and . In
the gold alloys we may have a two-band conduction
mechanism with the neck region and the belly region of
the Fermi surface of gold acting as two individual bands.
The required temperature dependence of X and x may
then result from the temperature-dependent anisotropy
of the relaxation time for electron scattering. From
Table IIT we see that for the alloys Au#-Pt and Pt-Au
M>u and 13>\, We can therefore approximate Egs. (20)

87 This form of the inverted Eqgs. (20) and (21) has been pointed
out to us by B. Lengeler.

Finally, we associate ¢; with the conductivity of the
belly region and o» with the conductivity of the neck
region. In gold the ratio of the relaxation times for the
electron scattering by phonons (7neck/7belly)phonon de-
creases sharply with decreasing temperature at low
temperatures.®> On the other hand, (Tneek/Tbelly)impurity
is either constant or only slowly varying with tempera-
ture. Therefore, v decreases sharply with increasing T
at low temperatures [Eq. (26)]. If, in addition, 8=\
~ (Tneck/ Thelly) impurity decreases slowly with T at higher
temperatures, a maximum in the A(T) curves at low
temperatures will arise. Recently, Dugdale and Basin-
ski® used precisely this mechanism, namely, the tem-
perature dependence of the anisotropy of the relaxation
times, for analyzing their data on deviations from MR
in dilute copper and silver alloys. It has been suggested
recently®:%5:58 that the temperature dependence of the
ratio (Tneck/Thelly)phonon Cauises the observed increase
in the Hall constant of the noble metals at low tem-
peratures.

Whereas the arguments given above may favor an
interpretation using a two-band model, there are some
drawbacks. First, in thé two-band model and in the
derivation of Eq. (3) it is assumed that no interband
scattering occurs between the two bands (or the two
sections of the Fermi surface). This, however, is a very
unlikely proposition in a system like gold. Second, the
two-band mechanism can hardly explain the similarity
of the results obtained with the gold and the platinum
alloys, since the electronic band structure in Pt is quite
different®%® from that in Au.

A mechanism, which yields a KSW-type behavior for
A(T) and which is not sensitive to the electronic band

58 H, Plate, Physik Kondensierten Materie 4, 355 (1966).
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structure of the metal, can be found in the anisotropy
of the lattice vibrations as discussed by Bross.2

It was pointed out in Sec. IV that the proportionality
A(T)~psorvent(T), required by Eq. (3) at low tem-
peratures, is not accurately reflected in the experimental
results. This suggests that there are contributions to the
deviation A which have a temperature dependence
lower than that of the ideal resistivity. Since there are
typically only about five or six data points in the
temperature interval between 10 and 30°K, we do not
attempt to strip out the terms of individual powers of
T using least square polynomial techniques.

Finally, we examine the aspects arising from the
changes in the Fermi energy due to alloying. It is
convenient to use the diffraction theory® ® for describ-
ing the scattering of electrons within a lattice. The
squared matrix element for the transition between the
electron states k and k’=k-q can then be written as

| (k+q|W @) k) [2=5(q)| k+qlwlk) 2. (27)

W (r) is the (screened) potential at the location r due to
the ions. W (r) is the sum of the contributions of the
individual ions at the positions r;, W (r)=2"w(|r—r;|).
The structure factor S(q) is given by

S(@)=s*(q)s(q), (28)

with

s(g)= % Z:, eiTy (29)

(N=number of ions). It depends only upon the ion
positions. The form factor

(k+q|w|k) =0 / iy (rehdr (30)

(Qo=volume per ion) depends only upon the individual
ion potential. The temperature dependence of the
structure factor arises through the expansion of the
position vector r;, or the displacement from an equi-
librium position, into a set of normal coordinates, which
are populated according to the Bose-Einstein statistics
and the frequency distribution function for the specific
lattice. Since the vibrational spectrum is usually
changed by alloying, the structure factor will then be
an explicit function of temperature and solute concen-
tration as well as the momentum transfer variable q.
Under isotropic conditions the relaxation time 7 for
electron scattering is, for the pure element at finite
temperature or an alloy at 0°K, given by

1 2k F
S ¢ / S@| (sta|wlk)*pdg,  (31)

T

$ L. J. Sham and J. M. Ziman, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1963),
Vol. 15, p. 221.

W. A. Harrison, Pseudopotentials in the Theory of Metals
(W. A. Benjamin, Inc., New York, 1966), p. 19,
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where C is a constant, and k5 the k value at the Fermi
energy. However, the matrix element for alloys at finite
temperatures cannot be factored into a structure factor
and form factor and cannot yield the simple form of
Eq. (31), except in special cases. This arises since the
vibrational spectrum as well as the potential can be
different at a solute atom site, and since the ideal lattice
structure factor is finite for q not equal to a reciprocal
lattice vector and nonzero temperature. Hence, when
the matrix element is squared to obtain the transition
probability, cross product terms appear which mix the
ideal lattice term and the extra terms arising from the
change in structure factor and potential at the impurity
sites. These extra terms cause deviations from MR as
has been discussed by Kagan and Zhernov.?? Only if
either the structure factor or the potential of the solute
is the same as that of the solvent will the matrix element
lead to a factorizable transition probability such that
the relaxation time (and so the resistivity) for the alloy
can be described by an equation of the form of (31).
Nevertheless, Eq. (31) does provide a basis for dis-
cussion in the following sense. The changes in structure
factor and pseudopotential for an alloy discussed above,
that give rise to deviations from MR, represent changes
in the integrand of (31). However, in addition to the
changes in the integrand, the surface of integration
itself may change upon alloying. This can be due to
changes in the Fermi level or Fermi surface based on
band-structure and net-charge considerations, or to
changes in size of the Brillouin zone itself, if the unit
cell dimensions vary with alloying. Since the contri-
bution to deviations from MR arising from the com-
bination of changes in integrand and change in inte-
gration contour will be of second order, the first-order
term will come from the pure lattice or solvent com-
ponent of the structure factor and pseudopotential, in
which case the factored form of the integrand in Eq.
(31) is valid. The contribution to the resistivity due to
a shift Akp in Fermi momentum is then readily shown
to be proportional to
Hence, it will have a temperature dependence cor-
responding to that of the structure factor evaluated at
twice the Fermi momentum. The magnitude of this
contribution will be approximately proportional to the
pure solvent resistivity. We say approximately since the
solvent resistivity is proportional to the integral in
Eq. (31), whereas Eq. (32) represents the integrand
evaluated at the upper limit. The inference from the
mechanism considered here that the deviation from MR
should be proportional to the solvent resistivity tends
to be supported by our observations that the deviation
from MR for the P¢-Au alloys is higher than that for the
Au-Pt alloys. According to Eq. (32), the sign of the
deviation from MR due to a shift in Fermi energy
should be negative if the Fermi surface shrinks upon
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alloying. The addition of Pt to Au would lead one to
expect a lowering of the Fermi energy as the empty d
levels in Pt are filled by the Au s electrons. A com-
pensation arises from the fact that the lattice constant
of Pt is smaller than that of Au. Hence, the question of
whether kp increases or decreases is not solely deter-
mined by valence considerations. This argument also
applies for equivalence alloys, such as Au-Ag and
Awu-Cu. Since the lattice constant for Cu is smaller than
for Au, whereas that of Ag is the same as in Au, one
would expect a larger deviation from MR for A%-Cu
alloys than for Au-Ag alloys if a change in Fermi energy
is important. The experimental results given in Sec. IV
indicate that the deviations from MR for A#-Cu are
much larger than for 4u-Ag ,and so tend to support the
mechanism based on the change in Fermi energy.

The temperature dependence of the structure factor
evaluated at 2kr will not be the same as that of the
portions for lower q because of the presence of the
Debye-Waller factor, which takes into account multi-
phonon processes.?® The Debye-Waller factor multiplies
the remainder of the structure factor by exp[ —2W*(q)].
For a Debye model with cubic symmetry W* is at high
temperatures given by®

W*~3122T/ Mk 0. (33)

Here M, kg, and © are the ion mass, Boltzmann’s
constant, and the Debye temperature, respectively.
# is Planck’s constant divided by 2. The remainder of
the structure factor is proportional to the temperature
at high temperatures. Thus, we have at high tempera-
tures

S(Q)~T exp[— (3%#°¢*T/Mk5©?) ]. (34)

The low-¢ part will essentially vary as T, while the
negative exponential dominates the high-¢ part. Thus
the structure factor at ¢=2kp can actually decrease
with increasing temperature, while the low-¢ part still
increases. If the change in Fermi energy is an important
mechanism in the deviations from MR, a plot of
log[A(T)/T7] versus T should yield a straight line with
a negative slope in the high-temperature range. From
the magnitude of the slope the Debye-Waller factor at
2k can then be calculated. Such a plot is given in Fig.
12 for five platinum alloys. With the exception of the
low solute concentration alloy, the figure confirms the
linear relation expected. A further expectation is that
the magnitude of A(T) should decrease at very high
temperatures. The results of Domenicali and Christen-
son® indeed show such a decrease in A(T') above 500°K.
A plot of log{A(T)/T} versus T for their Cu-9.46 Mn
sample yields a straight line to above 850°K. However,
the exponent of the Debye-Waller factor calculated
from the slopes of the straight lines obtained in the
plots of log(A(T)/T) versus temperature is found to be
about 50 times larger than the value estimated from
Eq. (33). Thus, while the functional form of the A(T)
curves expected from Eq. (32) for high temperatures
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Fi1c. 12. LogA(T)/T versus temperature for platinum-gold
and platinum-rhodium alloys (run MRG6).

seems to be'in accord with the experimental results for
high solute concentration alloys, the numerical agree-
ment with theory is not satisfactory.

In summary it appears that several mechanisms can
be suggested for explaining the data qualitatively.
Probably the observed deviations from MR are actually
caused by several mechanisms simultaneously. There-
fore, it seems to be difficult to give an unambiguous
interpretation with one single model.

Co and Rh as Solutes

Whereas the 4u#-Pt alloys were found to behave quite
similar to the alloys containing nontransition-metal
impurities, the two other transition-metal solutes
investigated, cobalt and rhodium, gave quite different
results.

As mentioned in Sec. I, magnetic impurities can lead
to anomalies in the temperature dependence of the
electrical resistivity. In particular, a minimum in the
resistivity at very low temperatures is often observed in
alloys containing small amounts of magnetic impuri-
ties.)11 Recently, Kondo'? has treated the resistance
minimum in dilute magnetic alloys theoretically. He
obtained in the resistivity a contribution due to spin
scattering of the form

ps=cpu[ 1+ (327 /Ep)InT], (35)

where z is the electron per atom ratio, Ep the Fermi
energy, J the s-d exchange integral, and ¢ the atomic
fraction of the magnetic ions. py is given by

pur=3mmJ%s(s+1)V /2e¢hEpN , (36)
where m is the electronic mass, s the spin value of the
ion, N/V the number of atoms per unit volume, and e
the elementary charge. The second term in Eq. (35)
gives a negative contribution to the electrical resistivity
if the s-d exchange integral J is negative. When com-
bined with the lattice resistivity, this negative term
causes a resistance minimum.
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According to Fig. 11 a plot of the deviation A versus
InT for the samples A#-2.1Co and Pt-9.07Rh gives a
straight line between about 30 and 200°K. As has been
mentioned in Sec. IV, in our 4#-Co alloy the effective
Co concentration may be appreciably smaller than
2.1 at.9,. This may explain why we did not find negative
deviations A as has been reported by others for this
system.®! The linearity of both curves shown in Fig. 11
may suggest that between about 30 and 200°K the
Kondo term in the resistivity proportional to InT is the
dominant contribution to A. The tailing off in the curves
at lower temperatures may be associated with a small
contribution to A from another mechanism. An inter-
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pretation of the curves in Fig. 11 with Kondo’s InT
term would suggest that the s-d exchange integral J is
positive in both samples. From the slope of the curve
shown in Fig. 11, in combination with Egs. (35) and
(36) the value J=0.6 eV is then obtained for the sample
Au-2.1 Co.
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A general formula for the transition radiation emitted by a uniformly moving charged particle normally
incident on a multilayer, either self-supporting or deposited on a thick substrate, is calculated. This formula
enables one to take into account the exact multilayer configuration of targets, e.g., oxide layers in the

analysis of transition radiation data.

1. INTRODUCTION

RANSITION radiation, emitted by uniformly

moving charged particles crossing the interface of
two media having different dielectric properties, has
recently been the subject of many theoretical and
experimental studies.!? More recently the construction
of a new high-energy particle detector making use of
transition radiation is being developed.? In experi-
mental work, the targets often consist of multilayers,
either self-supporting or deposited on a thick substrate,
but a general formula which can account for the real
configuration of multilayers has not yet been calculated.
In this paper, we present the result of an exact treat-
ment of the transition radiation from an arbitrary
multilayer due to normally incident charged particles.
Since an excellent exposition of the underlying electro-
magnetic theory and the methods used below is avail-
able in Ref. 4, we restrict ourselves to the essential
points and the new results in the following concise
presentation of the derivation of a general formula for
transition radiation from a multilayer.

1F. G. Bass and V. M. Yakovenko, Usp. Fiz. Nauk. 86, 189
(1965) [English transl.: Soviet Phys.—Usp. 8, 420 (1965)7. This
is the most comprehensive review article up to 1965.

2 J. C. Ashley, L. S. Cram, and E. T. Arakawa, Phys. Rev. 160,
313 (1967).

3 L. C.L. Yuan, C. L. Wang, and S. Priinster, Phys. Rev. Letters
23, 496 (1969).

#R. H. Ritchie and H. B. Eldridge, Phys. Rev. 126, 1935 (1962).

2. GEOMETRY OF PROBLEM AND
BOUNDARY CONDITIONS

Consider an #» layer bounded by the n+41 plane
interfaces parallel to the xy plane located at z=D,
(p=1, ..., n+1). The thickness d, of the pth layer
between z=D, and z2=D,; is dp=Dp;1—D,p, and its
dielectric constant is e, The semi-infinite spaces
2<D;=0 and 2> D, are characterized by dielectric
constants e and e,;1, respectively.

When a uniformly moving charged particle passes
through the # layer along the normal to the plane inter-
faces of the # layer, taken as the z axis, the only non-
vanishing component of the current density j(r,?)
=(0,07,) and the Hertz vector II(r,#)= (0,0,I1,) will be
the z component and we omit the subscript z below.
If the particle carries a charge Ze and moves at velocity
v, then the current density is given by

7(1,0)=Zevd ()8 (y)d (z—t) . 1

Here we have assumed that the particle crosses the
front interface z=D;=0 at time =0 and §(x) denotes
Dirac’s é function.

The Fourier transform of (1),

1 +o0 +o0 -0
dx dy dt
(277) 8/2 — —0 —0o0

X j(r,t)eiChatubmat - (2)

T (kaykeyyes I z)=



